Flag-transitive 4-designs and PSL(2, q) groups

نویسندگان

چکیده

This paper is a contribution to the classification of flag-transitive 4- $$(v,k,\lambda )$$ designs. Let $$\mathcal D=({\mathcal {P}}, {\mathcal {B}})$$ be $$(q+1,k,\lambda design with $$\lambda \ge 5$$ and $$q+1>k>4$$ , $$G=PSL(2,q)$$ automorphism group D$$ $$G_x$$ stabilizer point $$x\in {P}}$$ $$G_B$$ setwise block $$B\in {B}}$$ . Using fact that must one twelve kinds subgroups PSL(2, q), up isomorphism we get following two results: (i) If $$10\ge \lambda then possible exception $$(G,G_x,G_B,k,\lambda )=(PSL(2,761),{E_{761}}\rtimes {C_{380}},S_4,24,7)$$ or $$(PSL(2,512),{E_{512}}\rtimes {C_{511}},{D_{18}},18,8)$$ which remain undecided, unique 4-(24, 8, 5), 4-(9, 6, 10), 4-(8, 6), 7, 4-(10, 9, 4-(12, 11, 8) 4-(14, 13, 10) $$(G,G_x,G_B)=(PSL(2,23),$$ $${E_{23}}\rtimes {C_{11}},D_8)$$ $$(PSL(2,8),{E_{8}}\rtimes {C_{7}},D_6)$$ $$(PSL(2,7),{E_{7}}\rtimes {C_{3}},D_6)$$ {C_{7}},D_{14})$$ {C_{7}},{E_8}\rtimes {C_7})$$ $$(PSL(2,9),{E_{9}}\rtimes {C_{4}},{E_9}\rtimes {C_4})$$ $$(PSL(2,11),{E_{11}}\rtimes {C_{5}},{E_{11}}\rtimes {C_{5}})$$ $$(PSL(2,13),{E_{13}}\rtimes {C_{6}},{E_{13}}\rtimes {C_6})$$ respectively. (ii) >10$$ $${G_B}=A_4$$ $$S_4$$ $$A_5$$ $$PGL(2,q_0)$$ ( $$g>1$$ even) $$PSL(2,q_0)$$ where $${q_0}^g=q$$ there no such

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups

The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).

متن کامل

2 - Transitive and flag - transitive designs

Throughout this paper V always will denote a design with "t; points, k > 2 points per line, and>' = 1 line through any two different points. Let G <:: Aut (V). I will primarily be interested in the case in which G either is 2-transitive on the points of VOl' is transitive on the flags (incident point-line pairs) ofV. Note that 2-transitivity implies flag-transitivity since>. = 1. The subject ma...

متن کامل

Flag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type

Let $G$ be an automorphism group of a‎ ‎$2$-$(v,k,4)$ symmetric design $mathcal D$‎. ‎In this paper‎, ‎we‎ ‎prove that if $G$ is flag-transitive point-primitive‎, ‎then the‎ ‎socle of $G$ cannot be an exceptional group of Lie type‎.

متن کامل

Imprimitive flag-transitive symmetric designs

A recent paper of O’Reilly Regueiro obtained an explicit upper bound on the number of points of a flagtransitive, point-imprimitive, symmetric design in terms of the number of blocks containing two points. We improve that upper bound and give a complete list of feasible parameter sequences for such designs for which two points lie in at most ten blocks. Classifications are available for some of...

متن کامل

Reduction for primitive flag-transitive (v, k, 4)-symmetric designs

It has been shown that if a (v,k,λ )-symmetric design with λ ≤ 3 admits a flag-transitive automorphism group G which acts primitively on points, then G must be of affine or almost simple type. Here we extend the result to λ = 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2021

ISSN: ['0925-1022', '1573-7586']

DOI: https://doi.org/10.1007/s10623-021-00867-7